Heterologous Expression of the AtDREB1A Gene in Transgenic Peanut-Conferred Tolerance to Drought and Salinity Stresses
نویسندگان
چکیده
Research on genetic transformation in various crop plants using the DREB1A transcription factor has shown better abiotic stress tolerance in transgenic crops. The AtDREB1A transgenic peanut (Arachis hypogaea L. cv. GG 20), which was previously developed, was characterized in terms of its physio-biochemical, molecular and growth parameters. The tolerance of this transgenic peanut to drought and salinity stresses was evaluated at the seedling (18 days old) and maturity stages. Transgenic peanut lines showed improved tolerance to both stresses over wild-type, as observed by delayed and less severe wilting of leaves and by improved growth parameters that were correlated with physio-biochemical parameters such as proline content, total chlorophyll content, osmotic potential, electrolytic leakage and relative water content. The expression pattern of the AtDREB1A gene evaluated using qPCR at different time points demonstrated that transgene expression was induced within two hours of stress imposition. The better performance of transgenic AtDREB1A peanut at the seedling stage and the improved growth parameters were due to the expression of the transgene, which is a transcription factor, and the possible up-regulation of various stress-inducible, downstream genes in the signal transduction pathway under abiotic stress.
منابع مشابه
Stress Inducible Expression of AtDREB1A Transcription Factor in Transgenic Peanut (Arachis hypogaea L.) Conferred Tolerance to Soil-Moisture Deficit Stress
Peanut, an important oilseed crop, is gaining priority for the development of drought tolerant genotypes in recent times, since the area under drought is constantly on the rise. To achieve this, one of the important strategies is to genetically engineer the ruling peanut varieties using transcription factor regulating the expression of several downstream, abiotic-stress responsive gene(s). In t...
متن کاملSimultaneous Expression of Abiotic Stress Responsive Transcription Factors, AtDREB2A, AtHB7 and AtABF3 Improves Salinity and Drought Tolerance in Peanut (Arachis hypogaea L.)
Drought, salinity and extreme temperatures are the most common abiotic stresses, adversely affecting plant growth and productivity. Exposure of plants to stress activates stress signalling pathways that induce biochemical and physiological changes essential for stress acclimation. Stress tolerance is governed by multiple traits, and importance of a few traits in imparting tolerance has been dem...
متن کاملStress Inducible Overexpression of AtHDG11 Leads to Improved Drought and Salt Stress Tolerance in Peanut (Arachis hypogaea L.)
Peanut is an important oilseed and food legume cultivated as a rain-fed crop in semi-arid tropics. Drought and high salinity are the major abiotic stresses limiting the peanut productivity in this region. Development of drought and salt tolerant peanut varieties with improved yield potential using biotechnological approach is highly desirable to improve the peanut productivity in marginal geogr...
متن کاملEvaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice
Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes ...
متن کاملComparative Transcriptome Analyses Reveal Potential Mechanisms of Enhanced Drought Tolerance in Transgenic Salvia Miltiorrhiza Plants Expressing AtDREB1A from Arabidopsis
In our previous study, drought-resistant transgenic plants of Salvia miltiorrhiza were produced via overexpression of the transcription factor AtDREB1A. To unravel the molecular mechanisms underpinning elevated drought tolerance in transgenic plants, in the present study we compared the global transcriptional profiles of wild-type (WT) and AtDREB1A-expressing transgenic plants using RNA-sequenc...
متن کامل